Reg. No.:

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CAT	EGOR	Y COMPONENT	COURSE CODE	COURSE TITLE	
Ι	PART - III		CORE-1	P23MA101	ALGEBRAIC STRUCTURES	
Date :	04.11	.2024/	AN T	ime : 3 hours	Maximum: 75 Marks	
Course Outcome	Bloom's K-level	Q. No.		<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL Q</u> uestions.		
CO1	K1	1.	If $O(G) = $, then G is abelian. a) p^3 b) p^2 c) p d) p^4			
CO1	K2	2.		jugate classes in S_n isb) $p(n^2)$ c) $p(n^2)$		
CO2	K1	3.		ge b) subgro	of G , then \overline{G} is solvable. up norphic image	
CO2	K2	4.	·		element $m \in M$ is of the form = $2rm_0$ d) $m = r^2m_0$	
CO3	K1	5.	The subspace W of V is invariant under $T \in A(V)$ ifa) $W \subset TW$ b) $WT \subset W$ c) $T \subset W$ d) $W \subset T$			
CO3	K2	6.	The linear transformation $S, T \in A(V)$ are said to be similar if there exists an invertible element $C \in A(V)$ such that a) $S = CTC^{-1}$ b) $S = TC^{-1}$ c) $T = CSC^{-1}$ d) $T = SC^{-1}$			
CO4	K1	7.	If $E^2 = E$ and $F^2 = F$ and they are similar iff they have the a) different nullity b) different rank c) same nullity d) same rank			
CO4	K2	8.			similar to a matrix. itary d) symmetric	
CO5	K1	9.		o be a skew symmetric ib) $A' = A$ c) A'	$f \underline{\qquad} = -A^T \qquad \text{d) } A' = -A$	
CO5	K2	10.		$m tr(ACA^{-1}) = \) trA \qquad c) tr$	$\overline{C^{-1}}$ d) trA^{-1}	
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)			
CO1	K2	11a.	Prove that $N(a)$ is a	(OR)		
CO1	K2	11b.	Prove that $n(k) = 1$	$+p+\cdots+p^{k-1}.$		
CO2	K2	12a.	Prove that S_n is not	(OR)		
CO2	K2	12b.	Suppose that G is t	he internal direct produc	ct of $N_1, \dots N_n$. Then prove that for	

·				
			$i \neq j, N_i \cap N_j = (e)$ and if $a \in N_i, b \in N_j$ then also prove that $ab = ba$.	
CO3	K3	13a.		
CO3	K3	13b.	Explain the proof of "If $u \in V$, is such that $uT^{n_1-k} = 0$, where $0 < k \le n_1$, then $u = u_0T^k$ for some $u_0 \in V_1$ ".	
CO4	КЗ	14a.	Write the proof of "Suppose the two matrices A, B in F_n are similar in K_n where K is an extension of F . Then A and B are already similar in F_n ". (OR)	
CO4	K3	14b.	Write the proof of "Suppose that $V = V_1 \oplus V_2$, where V_1, V_2 are subspace of V invariant under T .Let T_1 and T_2 be linear transformations induced by T on V_1 and V_2 respectively. Then the minimal polynomial for T over F is the least common multiple of $p_1(x)$ and $p_2(x)$ where $p_1(x)$ and $p_2(x)$ is the minimal polynomial of T_1 and T_2 respectively".	
CO5	K4	15a.	Analyze the proof of "If $T \in A(V)$ then prove that trT is the sum of the characteristic roots of T ". (OR)	
CO5	K4	15b.	Analyze the proof of "If $(vT, vT) = (v, v)$ for all $v \in V$, then prove that <i>T</i> is unitary".	

Course Outcome	Bloom's K-level	Q. No	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)	
CO1	K4	16a.	Illustrate Cauchy's theorem. (OR)	
CO1	K4	16b.	Illustrate Sylow's theorem.	
CO2	K5	17a.	Prove: If $p(x) \in F[x]$ is solvable by radicals over <i>F</i> , then the Galois group over <i>F</i> of $p(x)$ is a solvable group. (OR)	
CO2	K5	17b.	Prove: Every finite abelian group is the direct product of cyclic groups.	
CO3	К5	18a.	Explain the proof of "If $T \in A(V)$ has all its characteristic roots in F , then there is a basis of V in which the matrix of T is triangular". (OR)	
CO3	K5	18b.	Explain the proof of "Two nilpotent linear transformations are similar iff they have the same invariants".	
CO4	K5	19a.	Explain the proof of "The elements S and T in $A_F(V)$ are similar in $A_F(V)$ iff theyhave the same elementary divisors". (OR)	
CO4	K5	19b.	Explain the proof of "For each i=1,2,,k, $V_i \neq (0)$ and $V = V_1 \oplus V_2 \oplus \oplus V_k$. Then the minimal polynomial of T_i is $q_i(x)^{l_i}$ ".	
CO5	K6	20a.	Discuss the proof of "The linear transformation T on V is unitary iff it takes an orthonormal basis of V into an orthonormal basis of V ." (OR)	
CO5	K6	20b.	Discuss the proof of For all $A, B \in F_n$, i) $(A')' = A$ ii) $(A + B)' = A' + B'$ iii) $(AB)' = B'A'$	